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Abstract—In this paper, we propose a novel voxel-based method
for joint estimation of underlying activity signal and hemodynamic
response function (HRF) in functional magnetic resonance imag-
ing (fMRI). In the proposed two stage iterative framework, fused-
least absolute shrinkage and selection operator (Fused LASSO)
penalty is utilized for activity detection and HRF estimation.
Conditions of smoothness and sparsity are imposed on HRF for
its estimation. The validity of the proposed method is demonstrated
on both synthetic and real fMRI data.
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I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is being
used extensively for neuroscience research and clinical ap-
plications [1]. fMRI is a non-invasive method that measures
blood oxygen-level dependent (BOLD) signals in the brain
where BOLD signal is the convolution of an activity signal (or
stimulus) with hemodynamic response function (HRF) that is
characteristic of the brain region [2].

To infer meaningful information in fMRI data, statistical
methods play a crucial role [3]. Conventional, general linear
model (GLM) framework in fMRI relies on apriori knowledge
of experimental paradigm and hence, the extrinsic activity sig-
nal (or stimulus) [4, 5]. In addition, studies also assume a pre-
defined shape of HRF [6]. Thus, typically each voxel’s BOLD
time series is regressed on constructed or known temporal
regressors, and region activation is detected using this pre-
defined information. However, we may not have knowledge
of activity signal when it is intrinsic stimulus such as during
discharges in epilepsy, resting state, etc. [7-8]. In addition,
the shape of HRF may also be different in different regions
of the brain as well as in patients with neuro-disorders [9].
Thus, there is a need for developing a methodology for joint
estimation of underlying activity signal and the shape of HRF.

Although methods have been proposed for the estimation
of activity signal [10-14], these methods assume apriori a
canonical shape of HRF. For example, in [10] fixed canonical
HRF is assumed along with spatio-temporal priors on the
underlying activity signal to estimate the activity signal. In
addition to the limitation of a fixed apriori HRF shape, region
based estimation is assumed while voxels may have different
HRFs within a region of interest (ROI). Recently, in [11], voxel
based canonical HRF is used to design finite rate innovation
sampling kernel to estimate the underlying activation signal. In

[12-14], sparsity constraint is imposed on underlying activity
signal in the GLM framework, but again assuming apriori
canonical HRF shape.

Thus, the above methods have drawbacks because HRF may
vary across different regions of the brain and across different
subjects. Since HRF modeling can play a crucial role in the
estimation of the underlying activity signal, we propose a
method for the joint estimation of HRF and the activity signal.
To take care of HRF variability across ROI, we use massive
univariate approach, i.e., voxel-based estimation framework.
This framework takes care of spatio temporal variability of the
HRF. In the joint estimation framework, we use a two-stage
iterative procedure. First, we estimate the underlying activity
signal via fused least absolute shrinkage and selection operator
(fused LASSO) constraint on activity signal assuming some
initial shape of HRF. Next, we refine the HRF estimate using
the estimated activity signal at each voxel. This procedure
is iterated until the shapes of HRF and the activity signal
converge. The proposed method has been tested on both the
synthetic and the real fMRI data.

This paper is organised as follows. Section 2 describes
the fMRI time series model. Section 3 describes the pro-
posed method for joint estimation of HRF and activity signal.
Simulation results on both simulated and real fMRI data are
presented in Section 4. In the end, conclusions are presented
in section 5.

II. FMRI TIME SERIES MODEL

This section presents a brief background on fMRI signal
time series. Let us consider that M no. of brain volumes, at
time instants tj where j = 1, 2, . . . ,M , have been captured
during an fMRI experiment. The BOLD signal intensity at
a particular voxel Vi in the scanned brain volumes can be
represented as a time series yi = [yi,1, yi,2, ..., yi,M ].

In general, an fMRI signal is comprised of a) hemodynamic
signal modeled as convolution of activity signal with HRF
and b) noise that is correlated in time generally modeled as
autoregressive noise of order 1 (AR (1)) [15]. Thus, the BOLD
signal at a voxel Vi is represented as [3]:

yi = si ⊗ hi + ξi, (1)

where si is a vector of length M representing activity signal,
hi is the amplitude of L-length HRF at voxel Vi, and ξi is



the vector of M -length representing colored AR(1) noise ξi ∈
N(0,Γ), where Γ is a symmetric positive definite covariance
matrix of size MxM with its lth element ρ|l|. Equation (1) has
two unknown functions: the HRF hi and the activity signal si.

III. PROPOSED JOINT ESTIMATION FRAMEWORK

In this section, we present the proposed joint estimation
framework of HRF and activity signal. We carry out estimation
as a two-stage iterative method wherein we first estimate the
activity signal si followed by estimation of HRF hi.

A. Stage-1: Estimation of activity signal

The model in (1) can be rewritten as

yi = Hisi + ξi. (2)

where Hi is a Toeplitz convolution matrix of dimension
MxM . The first column of Hi is filled with HRF padded
with M -L zeros at the end.

In this paper, we limit the method to the estimation of block
related designs. In this scenario, the activity signal will be
sparse and the first difference will be more sparse. Thus, we
impose a fused least absolute shrinkage and selection operator
(LASSO) penalty to the activity signal. Fused LASSO which
is introduced in [16], encourages sparsity in both coefficients
and their successive first difference. It has been used in many
applications, such as image denoising, time varying networks,
prostate cancer analysis, etc [17-19].

Using the above motivation, we formulate the problem of
estimation of activity signal as below:

ŝi = argmin
si

‖Rv(yi −Hisi)‖2 + λ0 ‖si‖1 +

λ1

M∑
j=2

| si,j − si,j−1 |,
(3)

where Rv is the decorrelation or the noise whitening matrix
resulting from the Cholesky factorization of the inverse of
noise covariance matrix Γ (Γ−1 = RT

v Rv) [20]. λ1 is the
regularisation parameter. This problem is difficult to solve be-
cause fused LASSO penalty is non-smooth and nonseparable.
Thus, this estimation problem can be reformulated in matrix
form as below:

ŝi = argmin
si

‖Rv(yi −Hisi)‖2+λ0 ‖si‖1+λ1 ‖ Tsi ‖1, (4)

where T is the first difference matrix operator as given below:

T =


−1 1 0 . . 0 0
0 −1 1 0 . . 0
0 0 −1 1 0 . .
0 0 . . . . .
. . . . . . 0
0 . . . 0 −1 1
0 0 . 0 0 0 −1


This optimization problem can be solved easily. However,

in (4), Hi is unknown. Thus, we start with an initialization of
HRF using the canonical shape of HRF.

Fig. 1: (a) canonical HRF; (b) Scaling function of db4

B. Stage-2: Estimation of HRF

This subsection describes the estimation of HRF in the joint
iterative estimation framework. The model in equation (1) can
also be written as:

yi = Sihi + ξi. (5)

where Si is a MxL Toeplitz convolution matrix consisting of
lagged stimulus estimated covariates at voxel Vi.

In our recent work [21], we have drawn following assump-
tions on HRF:

B1) HRF is a smooth function over time. Thus, we incor-
porated this knowledge into our formulation and apply
the Tikhonov regularisation technique for imposing a
smoothness constraint on the HRF [22]. This smoothing
constraint is imposed by the second difference matrix
operator D which is defined as

D =


2 −1 0 . 0 0 0
−1 2 −1 0 . 0 0
0 −1 2 −1 0 . .
0 0 . . . . .
. . . . 2 −1 0
0 . . . −1 2 −1
0 0 . 0 0 −1 2


We minimize l2 norm of Dhi.

B2) In [21], we noted that the shape of the scaling function
corresponding to the orthogonal wavelet Daubechies-4
(or db4) (refer to Fig. 1(b)) is quite similar to the theo-
retical HRF shape generally assumed (refer to Fig. 1(a)).
Thus, HRF analyzed via db4 will be sparse in the wavelet
domain. Using this argument, we imposed sparsity on
Whi, where W is the matrix operator corresponding to
db4 [21].

Using the above assumptions, we formulate the problem of
estimation of HRF mathematically using Lagrangian multiplier
method as below:

ĥi = argmin
hi

‖Rv(yi − Sihi)‖2 + λ2 ‖Dhi‖2 + λ3 ‖Whi‖1
(6)

where λ2 and λ3 are the Lagrangian multipliers or the
regularization parameters.

C. Complete Algorithm

The above procedure of subsections A and B are repeated
iteratively until the shapes of ŝi and ĥi converge. The pseudo
code for the joint iterative estimation is provided in Table-1.



Table-1  
Pseudo Code for the Iterative Joint Estimation framework 

Input Parameters 
Tikhonov regularisation matrix D (size L x L) 
Fused LASSO matrix T (size M x M) 
Daubechies-4 matrix W (size L x L) 
Initialize HRF matrix Hi(size M x M) 
Lagrangian multipliers λ1, λ2, and λ3 (scalars) 

Noise covariance matrix  
Input Data 

Measured voxel Vi’s time series stacked in a column ri 
(size M x 1) 

Start 
Step-1   yi=detrend(ri) 
Step-2    Compute estimate of activity signal ˆ

is  
  0 11 12

ˆ arg min
i

i v i i i i i    
s

s R y H s s Ts  

Step-3    Compute estimate of HRF ˆ
ih using ˆ

is  

2 32 2 1
ˆ arg min ( )

i

i v i i i i i    
h

h R y S h Dh Wh
 

Repeat Step-2 and Step-3 until the shapes of ˆ
is and ˆ

ih

converge. 

Output   
ˆ

 

ih and ˆ

 

is  

 
IV. VALIDATION OF THE PROPOSED METHOD

This is to note that the goal of the paper is to estimate
the underlying stimulus along with HRF. Thus, it is important
that the ground truth is known for the purpose of method
validation. In this work, we test the proposed method on
the synthetic data constructed with a known HRF and known
activity signal with varying duration and varying onset times.
For the real fMRI data, block activity signal is used as the
ground truth. This implies that we know some ground truth
on the activity signal (or stimulus) in the real data too for the
purpose of validation of the proposed method, although HRF
is unknown in the real data.

A. Results on Synthetic fMRI Data

We generated synthetic fMRI time series by convolving
activity signal with the canonical HRF. We designed canonical
HRF of length L = 32 using the difference of two gamma
functions [24]. The shape of this HRF is shown in Fig. 1(a).

In order to assess the proposed framework, we test our
algorithm on the above synthetic data where activity signal
is generated with 5 ON periods of duration 6s, 5s, 10s, 3s,
and 1s with onsets at 10s, 40s, 100s, 140s, 180s, respectively.
We generated 200 time points of the synthetic BOLD fMRI
signal as below:

y ≡ y[n] = s[n]⊗ h[n] + ξ[n] (7)

For the sake of simplicity, noise is assumed to be white. Ad-
ditive white Gaussian noise is generated with variances 0.75,
0.5, 0.25, 0.1, and 0.05. Thus, Rv in (3) and (6) is the identity
matrix of size MxM . For computing the mean square error
(MSE), 500 Monte Carlo cycles have been performed over
voxel time-series (i.e., considering 500 different realizations of
noise time-series). MSE between the canonical and estimated
HRF is calculated as below:

MSE =
1

500

500∑
k=1

[
1

L

L−1∑
n=0

(ĥk[n]− hk[n])2
]

(8)

Fig. 2: (a): Estimated HRF; (b) Estimated Activity Signal

Table-2: MSE calculated between estimated and the actual HRF 

 (that is used in the synthetic data) 

 Noise Variance σ
2
 

0.05 0.1 0.25 0.5 0.75 

MSE using the 
Proposed method 

0.0151 0.0159 0.0171 0.0183 0.0220 

 The estimated HRF and the estimated activity signal for noise
variance of σ2 = 0.1 and the regularization parameters of
λ0 = 0.001, λ1 = 0.3, λ2 = 1, and λ3 = 0.7 are shown in
Fig. 2(a) and Fig. 2(b), respectively. These parameters are de-
termined empirically where the MSE is minimum. Voxel time
series is generated using canonical HRF and the algorithm was
initialized using the shape of Daubechies-4 (or db4) scaling
function (Refer to Fig. 1(b)). From Fig. 2(b), we observe that
the proposed method is able to extract stimuli sequences or the
activity signal with variable onset and duration. The MSE
results on the estimated HRF using the proposed algorithm
are tabulated in Table-2. Fig. 3 shows the receiver operating
characteristics (ROC) curve on the estimated activity signal.
It is observed that the performance of the proposed method is
satisfactory on the synthetic data.

B. Results on Real fMRI Data

In this section, we present results on real fMRI data acquired
from one subject performing a right hand sense task in 3-T MR

Fig. 3: ROC curve for single voxel time series with σ2=0.25



Fig. 4: Seed voxel at (40, 43, 66)

scanner. This dataset consists of an acquisition of 36 contigu-
ous slices with 128x128x36 voxels of voxel size 4x4x4 mm3.
100 brain volumes with repetition time of 3s are acquired. The
task involved is an example of block design paradigm starting
with 10 volumes of rest followed by 10 volumes of activity,
and so on. Data is preprocessed using SPM8 toolbox [25].
Pre-processing steps include realignment (with the first scan
for removal of motion artefact), slice time correction (with the
first slice of each volume), and normalisation (with the MNI
atlas). Resultant fMRI data had 100 scan points of 79x95x68
voxels each. We did not use smoothing in preprocessing as our
algorithm inherently enhances signal to noise ratio (SNR). We
discarded first 12 dummy scans, resulting in 88 brain volumes.
We also did detrending of real fMRI data prior to extraction
of underlying activity signal. This helps in removing the trend
from fMRI data and brings it to baseline.

First, we present result on the seed voxel which lies in
somatosensory region of the brain and is supposed to be active
in right hand sense task. In general, Brodmann regions 1, 2,
3 are found to be associated with somatosensory region [26].
Union of these Broadmann regions is extracted using the WFU
Pickatlas Tool in Matlab [27]. Then, seed voxel was extracted
in this region using our recent work [21]. The coordinates of
the seed voxel were found to be (40, 43, 66). Fig. 4 depicts
this seed voxel on the corresponding axial brain slice.

Next, we follow the procedure outlined in Table-1 and
estimate both the HRF and the activity signal. We start our
algorithm with the canonical HRF shape as shown in Fig. 1(a).
The regularization parameters are set to the same values as that
used in the synthetic fMRI experiment. Values of ρ in the range
of 0 to 1 are tested for an initialization of Rv . Empirically ρ
=0.1 is selected for whitening of AR(1) noise on voxel time
series. Optimization is carried out in CVX, a package for
specifying and solving convex programs [28]. Fig. 5 shows
the estimated HRF and the estimated activity signal using the
proposed method. The estimated activated signal in Fig. 5(b)
is having a block nature. Since first 12 scans were dummy,
we observe estimated signal to start from activity (block)
followed by the rest block. Although the applied stimulus is
in uniform blocks of 10 rest and 10 activity, the estimated
activity signal represents the perceived activity stimulus by
brain and hence, has a slightly varied shape. This is to note
that, in [21], we proposed a method for seed voxel detection
using known activity signal. Thus, estimated activity signal at
that voxel should closely resemble the applied stimuli which
is indeed the case as observed from Fig. 5b. This experiment

Fig. 5: (a): Estimated HRF; (b) Estimated Activity Signal at voxel
(40, 43, 66) using the proposed method

Fig. 6: (a): Estimated HRF; (b) Estimated Activity Signal at voxel
(41, 45, 66) using the proposed method

shows that our framework of joint estimation in this paper is
robust and reliable.

Next, for the sake of completeness, we test our algorithm
on other active voxels. Voxel with coordinates [41, 45, 66] is
extracted based on highest norm of voxel time-series lying in
somatosensory region. Fig. 6 shows the estimated HRF and
the estimated activity signal using the proposed method. We
note that on this voxel, the perceived activity stimulus by brain
differs from applied stimuli in a greater manner compared to
the seed voxel.

In future, we will extend the proposed method to resting
state data for the detection of intrinsic activity signal in order
to build robust resting state networks.

V. CONCLUSIONS

In this paper, we have introduced a joint iterative framework
for the estimation of hemodynamic response function (HRF)
and the underlying activity signal. This estimation is based on
two-stage iterative method. The proposed framework estimates
voxel-wise HRF via imposing constraints of sparsity in the
wavelet-domain and smoothness in time-domain on HRF. The
activity signal is estimated using fused LASSO penalty which
imposes sparsity on coefficients as well as on first difference
of the activity signal. The proposed method is observed to
perform satisfactorily.
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